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Abstract 

This is the first of a series of papers studying combinatorial (with no “subtractions”) bases 
and characters of standard modules for affine Lie algebras, as well as various subspaces and 
“coset spaces” of these modules. 

In part I we consider certain standard modules for the affine Lie algebra j,g:= sl(n + l,@), 
n 2 1, at any positive integral level k and construct bases for their principal subspaces (introduced 
and studied recently by Feigin and Stoyanovsky (1994)). The bases are given in terms of 
partitions: a color i, 1 5 i < n, and a charge s, 1 < s 5 k, are assigned to each part 
of a partition, so that the parts of the same color and charge comply with certain difference 
conditions. The parts represent “Fourier coefficients” of vertex operators and can bc interpreted 
as “quasi-particles” enjoying (two-particle) statistical interaction related to the Cartan matrix of g. 
In the particular case of vacuum modules, the character formula associated with our basis is the 

one announced in Feigin and Stoyanovsky (1994). New combinatorial characters are proposed 
for the whole standard vacuum &modules at level one. 

0. Introduction 

0. I 

This paper was meant to be a higher-rank generalization of the seminal work of 

Lepowsky and Prime [39] where they built vertex operator combinatorial bases for ^ 
what came to be called fi > b coset subspaces of standard (integrable highest weight) 

&modules, b being the Cartan subalgebra of g = sZ(2,C). The paper [39] was part 

of the Z-algebra program originated in [38-421 for studying affine algebras through 
vertex operators centralizing their Heisenberg subalgebras. Recall that the structure of 
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the rj > $ coset subspaces is essentially encoded in their quotient spaces of coinvariants 

with respect to the action of a certain abelian group. The latter are known to the physi- 

cists as parafermionic spaces because they turned out to be the underlying spaces of 

the so-called parafermionic conformal field theories of Zamolodchikov and Fateev [58] 

(with Virasoro algebra central charge c = (2k - 2/k + 2), k E Z, k > 1; we note that 

the original twisted vertex operator construction [40] found a conformal-field-theoretical 

understanding in [59]). The original T-algebra program was later generalized and elab- 

orated both by mathematicians [lo, 30, 43, 46-51, 53, 541, and physicists - cf. [24], 

where the string functions and parafermionic field theories associated with more general 

affine Lie algebras were studied. Variations of the celebrated Rogers-Ramanujan identi- 

ties and their generalizations - the Gordon-Andrews-Bressoud identities [28, l] - were 

first interpreted in representation-theoretical terms by Lepowsky and Wilson [40-421 

and were ubiquitous in the subsequent works. Similar in spirit construction - in terms of 

the “difference two” condition, discovered in representation-theoretical context in [40] 
_ was later proposed for the Virasoro algebra minimal models _&‘(2,2n + 1 ), n > 1, 

[15, 141. Despite all the progress, we were still far away from a simple and conceptual 

vertex operator (combinatorial) construction of the higher-level standard modules for 

higher-rank affine Lie algebras. A good measure of this deficiency was the lack of nice 

and general enough combinatorial character formulas. 

In the present paper and its follow-ups we shall venture to fill in part of this gap. 

Working in the setting of Vertex Operator Algebra Theory [22], we follow the tradi- 

tion and build vertex operator combinatorial bases, i.e., each basis vector is a finite 

product of vertex operators acting on a highest weight vector (the highest weights in 

consideration here are specified at the beginning of Section 5). Although we work 

with g = sl(n + l,@), our construction has a straightforward generalization for any 

finite-dimensional simple Lie algebra g of type A-D-E. Major technical tool is the 

homogeneous vertex operator construction of level one standard modules [2 1, 551. The 

most delicate part of the proofs - the independence arguments - employ the inter- 

twining vertex operators (in the sense of [20]) constructed in [13], which interchange 

different modules (but a general idea of Lepowsky’s, to build bases from the intertwin- 

ing vertex operators themselves, is yet to become a reality; for the level one case, cf. 

Proposition 0.2 and for the rank one case, cf. [7-91). 

We would like to point out that constructing a basis for 6 > h coset subspaces 

(or, equivalently, for the parafermionic spaces) disentangles also the structure of a 

variety of other important representations. For example, the standard module itself is 

well known [40] to be a tensor product of its tj > 6 coset subspace and a bosonic 

Fock space representation of a Heisenberg algebra associated with 6. More original 

application (to be discussed in [26]) of structural results for parafermionic spaces is 

through “nested” coset subspaces of type g (-(I) 1 hC1’) 1 (gcz’ 1 t;“‘) for some pair 

g(i) > gc2). If one picks for example g c2) := sl(n,C) which is naturally embedded in 

g(l) := sZ(n + 1, C), one obtains the Virasoro algebra unitary modules [23] with central 

charge c = l -6/[(n + 2)(n + 3)], II E Z, n > 1 (the underlying spaces of the minimal 
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conformal field theories of Belavin, Polyakov and Zamolodchikov [2]; as Alexander 

Zamolodchikov pointed to us, a similar in spirit coset construction had been largely 

used by early conformal field theorists prior to the ground-breaking work [27]) 

For reasons not fully understood, the character formula associated with the 

Lepowsky-Prime basis was vastly generalized in different directions on the physics 

side through a sweeping series of fascinating conjectures (inspired mainly by Thermo- 

dynamic Bethe Ansatz techniques): cf. [56, 52, 37, 34, 32, 33, 11, 12, 35, 57, 41 to 

name some few. The announced proofs [3, 36, 18, 4, 191 of some of these conjectures, 

do not even attempt to reveal the underlying vertex oper_ator combinatorial bases (very 

inspiring exception is the spinon construction of basic sZ(2,@)-modules related to the 

so-called Haldane-Shastry spin chain [5, 7-91; see Proposition 0.2 at the end of this In- 

troduction where we state the higher-rank generalization of the spinon character formula 

for level one). Not surprisingly, the true precursor of all these new characters seems 

to be another remarkable subspace (of the standard modules for affine Lie algebras), 

introduced in a recent announcement of Feigin and Stoyanovsky [16]: The so-called 

principal subspace, whose dual space has been beautifully described in [16] in terms 

of symmetric polynomial forms vanishing on certain hyperplanes. These subspaces are 

generated by the affinization of the nilpotent subalgebra of g consisting of (strictly) 

upper-triangular matrices when g = sZ(n + 1, C) and have obvious generalizations for 

any simple finite-dimensional Lie algebra g. It turned out to be more conceptual and 

technically easier to work with vertex operators (the products of whose coefficients 

generate our bases) in the setting of principal subspaces. More importantly for our ini- 

tial commitments, establishing a vertex operator basis for a principal subspaces implies 

the existence of a similar basis for the corresponding parafermionic space (this issue 

will be addressed in part II [25]; Feigin and Stoyanovsky themselves were well aware 

of this close relationship between their considerations and the approach of Lepowsky 

et al. [38-421). Furthermore, representing a given standard module as a direct limit of 

“twisted” (hit by special inner automorphisms) principal subspaces, one can hope to 

obtain a combinatorial basis for the whole standard module in terms of “semiinfinite 

monomials” (see [16] for the case g = sZ(2,C); this approach is similar in spirit to 

[39] and, not surprisingly, the corresponding character formulas are the same). Actu- 

ally, there is more natural, in our opinion, way to build the whole standard module 

in terms of jinite monomials, starting from the principal subspace: One simply has to 

throw in the game the negative simple roots and keep playing by the same rules. The 

corresponding character formula for the level one case is given in Proposition 0.1 at 

the end of this Introduction. The higher levels are treated in [25]. 

0.2 

We proceed with a demonstration of our bases in the two simplest examples beyond 

sZ(2, C): the principal subspaces of the vacuum standard sZ(3, @)-modules at levels one 

and two. They carry to a large extent the spirit of the general case and will ease the 

impetuous reader. 
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Fix a triangular decomposition sZ(3, C) =: g = n_ @ lj @ n+ and a corresponding 

Chevalley basis of g : 

where ~(1, CQ are the simple (positive) roots. Let 6 = g @ C[t-‘, t] @ Cc be the cor- 

responding (untwisted) affine Lie algebra (cf. [31]) and set g(m) := g 18 P, D := 
-td/dt, g E g, m E E. Let ~(10) be the highest weight vector of the vacuum standard 

&module L(&) at level one (the eigenvalue of the central charge c is called level). Mo- 

tivated by [ 1 l] and [ 161, we shall refer to x,(m), i = 1,2, as quasi-particle of charge 
1, color i and energy -m. The vacuum principal subspace at level one IV(&) := 

U(n+@C[t-‘, t]).u(&) (where U(.) denotes universal enveloping algebra), has a basis 

generated by the following color ordered quasi-particle monomials acting on v(&) : 

23 W(&) = u{ x5(2(mr2,2). . .xI,(m1,2)x,,(mr,, I 1. . .x,,(ml,l> 
r2, rla 

I?zP,i E rj-1 - 1 - N for 1 5 p 5 ri; 

mp+i*i I mp,l -2 for 15 p < ri; i= 1,2 ’ (0.1) 

where ro := 0 and N := (0, 1,2,. . .}. For an explicit list of some basis elements with 

low energies, see Example 4.1, Section 4 and the corresponding Table 1 in the appen- 

dix. The quasi-particle monomial basis for g = sZ(n+ 1, C) and generic fundamental (i.e. 

level one) highest weight /ii, 0 5 j 5 n, is given in Definition 4.1 and formula (4.3). 

In physicists’ terms, the above basis can be described in a very simple and natural 

way, reminiscent of the “functional” description of the restricted dual of the principal 

space in [16]: Consider the Fock space of two different (of color 1 or 2) free bosonic 

quasi-particles with a single quasi-particle energy spectrum consisting of all the integers 

greater than or equal to the charge (= 1) of the quasi-particle. Take a hamiltonian Z’ 

which is simply a sum of a single-particle term Xi and a two-particle interaction term 

22 (this interaction should be thought of as a statistical interaction in the sense of 

Haldane [29]). The single-particle energy is of course the sum of the single-particle en- 

ergies of all the quasi-particles (in a given state) and the two-particle energy is a sum of 

the interaction energies of all the pairs of quasi-particles (in a given state). The energy 

of interaction between a quasi-particle of color I and another quasi-particle of color m 
is A!,, where (Al,) := ( _‘l 2’ )is the Cartan matrix of g (the inner products of simple 

roots are inherently encoded in both the spanning and independence part of our proof; 

cf. Section 4). Since the character of the Fock space of noninteracting quasi-particles is 

(0.2) 
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where (q)r := (1 -q)(l -q’)...(l-q’), (q)o := 1, the full q-character of W(&jwill 

be a “deformation” of this expression with an interaction term (the binomial coefficient 

(‘; ) counting all the pairs of color i) : 

Tr$ = Trqxl+Xz Fock = c ’ 
r,+r2+2( :’ )+2( y )-r,r: 

Cq)r, (q)r* 
(0.3) 

WC&!) O,Q_>O 

The last expression is the Feigin-Stoyanovsky formula [ 161 (for generic rank and 

fundamental highest weight, see (4.19) here). At the end of the Introduction we state 

the analog of this formula for the whole vacuum basic module L(&). 

We proceed with the basis for the level two vacuum principal subspace (g =s1(3, C)). 

Here comes the surprise: rather unexpectedly, we shall give up the traditional approach 

to build module basis using a basis of the Lie algebra itself (i.e., quasi-particles of 

charge one). Instead, the building blocks of our basis will be certain - very natural 

from the point of view of Conformal Field Theory (and for that matter, Vertex Operator 

Algebra Theory [22]) - infinite linear combination of charge-one-quasi-particle mono- 

mials [39, 581. The use of these higher-charge (see below) vertex operators changes 

dramatically the structure of the basis: even in the special case g =s1(2, C), we end 

up with construction very different from [39] for example (cf. [2.5] for more detailed 

discussion). We believe that only this broader perspective can save the elegance and 

simplicity of the picture in the presence of more than one color (i.e., rankg > 1) at 

higher levels. The linear combinations in question are actually truncated (i.e., finite) 

when acting on highest weight modules and can be thought of as quasi-particles of 
charge > 1. For example, a quasi-particle of charge 2, color i and energy -m is 

defined as follows: 

xzl,(m) := c hz(m2)x,(m > (0.4) 

rn2,rnlEZ 

m2tm,=m 

(for a general definition of quasi-particles of arbitrary charge, see Section 3). Note that 

a quasi-particle of charge 2 “confines” two quasi-particles of charge 1 in such a way 

that only the total energy can be read off (the individual energies are not “measur- 

able”). In terms of the vertex operator (bosonic current) 

X,,(Z) := Y(x,(-1) .0(2&),2) = Cx,,(m)zP-’ (0.5) 
rnEZ 
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(z is simply a formal variable and 2(2&) is the highest weight vector of the level two 

vacuum standard module L(2&)), one has 

X&(Z) :=&(z)&,(z) = Y(x,(-1)2 . V(2&),Z) = ~x2&)=n-2. (0.6) 
rnEZ 

This is a standard recipe in Conformal Field Theory for obtaining currents of higher 

charge (the usual “normal ordering” of the product &r(z)&,(~) is not needed here 

because of the commutativity of the two factors). 

Let us now come back to the vacuum principal subspace at level two W(2&) := 

U(n+ cz @[t-‘,t]) . c(2&). Our basis will be generated by (charge and color ordered) 

quasi-particle monomials acting on z(2&), with ~1~) := r;2’ quasi-particles of charge 2 

and color i, i = 1,2, and p:” := r:‘) - r!2) quasi-particles of charge 1 and color i, for 

some Y!‘) 2 pi > 0 (i.e., a total charge’of pil) + 2~:~’ = yl(‘) + r/“). The conditions 

they must satisfy are given below (the top two lines on the right-hand side of the 

delimiter 1 concern the quasi-particles of charge 2; the bottom two lines concern the 

quasi-particles of charge 1): 

‘23 W(2/i”) = Ll (0.7) 

P;“>+o _ 
(“>+O 

{ 
&&y1 ,~~~~x~~~~~~L+,,2~x2sL~~~~~31.2~~~~~22~~~1,2~ . 

_ ‘,- 

XXY, (mry,> .XY, (mp , +,,I )~z&y, > ~XZl,(~l,l ) 

mp,i E r,‘L’, + r’“‘, - 2 - N for 1 < p 5 ~1(~); 

Wlp+l,i 5 mp., - 4 for 1 5 p < Yj2’; i = 1,2; 

mp.i E (“1 - 2~!~’ - 1 - N for Y!~) < p < i-l(‘); 

mp+l,i < rnp,’ -‘2 for r+” <p<I; ,I- ) ’ (1). _ 1 2 
I 

where r. (‘I = rr’ := 0. For an explicit list of some basis elements with low enegies, 

see Example 5.1, Section 5 and the corresponding Table 2 in the Appendix. (The 

quasi-particle monomial basis for g = sl(n + , C) and level k highest weight 2 = 

ko& + kjij, ko + kj = k, 1 < j < n, is given in Definition 5.1 and formula (5.14).) 

Although the initial conditions above may look strange at first sight, they can be 

read off in a remarkably simple way (a straightforward generalization of the level one 

picture): Consider the Fock space of four different (of color 1 or 2 and charge 1 or 2) 

free bosonic quasi-particles with single quasi-particle energy spectrum consisting of all 

the integers greater or equal to the charge of the quasi-particle. The hamiltonian consists 

again only of a single-particle term 91 and a two-particle interaction term HZ. The 
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single-particle energy is a sum of the single-particle energies of all the quasi-particles 

(in a given state) and the two-particle energy is a sum of the interaction energies of 

all the pairs of quasi-particles (in a given state). The energy of interaction between a 

quasi-particle of charge s and color 1 and another quasi-particle of charge t and color 

m is AI, min{s, t}. Similarly to the level one case, the corresponding q-character is 

where B” := min{s,t}, 1 2 s, t < 2 (cf. formula (5.27) for the general case). This is 

the character announced by Feigin and Stoyanovsky [ 161. 

0.3 

A few words should be said about the continuation of Part I and its easily conceivable 

generalizations, as well as some related open problems. 

As already mentioned, Part II [25] employs the given here bases and constructs 

similar quasi-particle monomial bases for the parafermionic spaces in standard modules 

(g = sZ(n + 1, C) and highest weights like the ones considered here). In the particular 

case of the vacuum module, the associated character formula is the z(n + 1, @ )-case 

of Kuniba-Nakanishi-Suzuki conjecture [37] (for the vacuum module, an independent 

proof using dilogarithms was recently announced in [36]). 

In [26] we shall “factorize” these characters in order to obtain combinatorial char- 

acters for the nested coset (j(l) > ,(‘J) > ($2) > $2)) subspace of two g > h coset 

subspaces of level two standard modules, sl(n + 1, C) = 9”) > gc2) = sl(n, C). With 

the natural structure of Virasoro algebra modules, these nested coset spaces are exactly 

the unitary modules of central charge c = 1 - 6/[(n + 2)(n + 3)], n E Z, n > 1, (in 

other words, we use a coset realization different from the classical [27]). The obtained 

combinatorial characters are the “fermionic” characters conjectured by Kedem et al. 

[33] (cf. also [44]; for a large subclass of the modules in question, these character 

formulas were proven by very different methods in [3]; general minimal models are 

treated in [4]). In order to cover all the Virasoro algebra modules from this series 

(not only the vacuum ones!), one needs to go beyond the vacuum module charac- 

ters of Feigin-Stoyanovsky and Kuniba-Nakanishi-Suzuki and consider more general 

dominant integral highest weights. 

Coming back to the considerations in Part I, we would like to point out that they have 

a straighforward generalization for the untwisted affinization 6 of any finite-dimensional 

simple Lie algebra g of type A-D-E and highest weights of the type considered here. 

What is not clear at this point is how to generalize elegantly this construction for an2 

dominant integral highest weight? Another exciting open problem is to construct a basis 

of colored semi-infinite quasi-particle monomials for the whole standard module, thus 
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generalizing the s3(2, C)-considerations of Feigin and Stoyanovsky [ 161 (the generated 

in this way characters are the same as the ones obtained from the tj > h coset decom- 

position of the standard module and the the Kuniba-Nakanishi-Suzuki characters of 

the parafermionic spaces). 

We conclude this Introduction with the presentation of two new combinatorial char- 

acter formulas for the vacuum basic &module L(&) (in order to be coherent with the 

rest of the paper, we shall state the results for g =sl(n + 1, C), but the generaliza- 

tion for any A-D-E type algebra is obvious). The first formula reflects a basis which 

is the most natural extension of the constructed here basis for the principal subspace 

W(~,J) c L(&): One simply has to imitate the principal subspace construction, adding 

vertex operators corresponding to the negative simple roots and taking into account the 

new constraint (cf. [39]) 

(22 - Zl )'"1.""x-,(z2zya,(zl > = const. 

Z,=Zl 

for every simple root cli, 1 5 i < n. 

Proposition 0.1. One has the following q-character for the vacuum basic (standard, 

level one) &module: 

Trfl = c ’ 
1/2C;,m=l A,,(r+i-r-i)(r-m--r-m)+C~=, r+/r--i 

(0.9) 
L&) ‘*I ,.... r*,LO rL(4)1+,(4)r_, ’ 

where (q)r := (1 - q)( 1 - q2). . . (1 - q’), (q)o := 1 and (AI,) is the Cartan matrix 

of 9. 

Note that in the particular case 6 = s^1(2, C), one can redefine rl := r+l, rz := r-1. 
and thus obtain the character (0.3) 

of the principal subspace of the vacuum basic s1(3,C)-module. This coincidence was 

observed and explained by Feigin and Stoyanovsky [16] (the expression (0.3), repre- 

senting the character of L(&) for 6 = $(2,@), appeared also in [45] as a limit of 

certain finite “fermionic” sums). The proof of the general formula in the above propo- 

sition is analogous to the proof of the special case [16]: Using the “Durfee rectangle” 

combinatorial identity [l] 

1 
- := n(l -qy = c &, 
(4)x 

120 
o b 

a.b/O 

(0.10) 

a-b=const 
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one immediately checks that (0.9) equals the well-known character expression due to 

Feingold-Lepowsky [ 171 (which inspired the homogeneous vertex operator construction 

121, 551) 

Tr$ (0.11) 

where Q is the root lattice of g. 

The higher level generalization of Proposition 0.1 will be presented in [25] because 

it requires the respective generalization of formula (0.11). 

Our second character formula mirrors another basis for the same module, this time 

built up from intertwining vertex operators (in the sense of [20]) corresponding to the 

fundamental weights and their negatives. 

Proposition 0.2. Another expression for the q-character of the vacuum basic &module 

is 

Tr$ = 
U/i”) 

c 
4 

l/2 c;,,=, A:;“(r+,--r-c o+m-r-mm+C)I=, rtir-i 

l-I’l=,(dr+,(dr-, ’ 

c”,=, A~;“(r+,--r-,EP v I 

where (A,, (-I’) is the inverse of the Cartan matrix of g. 

In the particular case 6 = $(2,@), one can again substitute rl := r+I, r2 
and thus obtain the Kedem-McCoy-Melzer formula [35, 451 

(0.12) 

= Y-1, 

which was shown to correspond to a spinon basis in [5] (cf. also [7-91). Note that its 

higher-rank generalization (0.12) follows again from (0.10) and (0.11) (this time, the 

elements of the root lattice are expressed in terms of fundamental weights). 

The higher-level generalization of Proposition 0.2 is yet unknown (one possible 

approach in the particular case g = s/(2, C) was proposed in [8]). 

The bases underlying the above expressions will be discussed in detail elsewhere. 

0.4 

The paper is organized as follows. In Section 1 we introduce most of our notations 

and definitions. In Section 2 we recall the homogeneous vertex operator construction 

of the basic (i.e., level one standard) modules. Section 3 introduces the concept of 
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quasi-particle of any integral positive charge. In Section 4 we build quasi-particle 

bases for the principal subspaces of the basic modules and supply the accompanying 

character formulas. Section 5 generalizes this construction and provides quasi-particle 

bases and corresponding characters for the principal subspaces at any positive integral 

level k. The appendix contains two tables which illustrate the examples discussed in 

this Introduction: Example 4.1 (Section 4) and Example 5.1 (Section 5). 

1. Preliminaries 

We shall use the notation 77, for the set of positive integers and N for Z+ U (0). 

Fix n E Z+ and let g := sl(n + 1, C ). Choose a triangular decomposition g = 

n_@lj@n+. Denotebyn:={xi,..., cr,} the set of simple (positive) roots, with the 

indices reflecting their locations on the Dynkin diagram. The notation A+ (respectively, 

A-) signifies the set of positive (resp., negative) roots; A := A+ U A_. The highest 

(positive) root will be denoted by 6’ and let us normalize the nonsingular invariant 

symmetric bilinear form (., .) on lj* so that (0, 0) = 2 (a condition true for any root); 

then we have a corresponding form (., .) on h. Let p be half the sum of the positive 

roots and h = h” = n-t 1 the (dual) Coxeter number. For any ,M E 6’ denote by h, E b 

its “dual”: %(A,) = (3,,~) for every A E lj*. 

We fix for concreteness a Chevalley basis {x,},~A U {h,,}~=l of g. Let Q := 

C:=, ZCI~, P := Cy=, &Ii be the root and weight lattice respectively, where Ai, i = 

1 , . . .,n, are the fundamental weights: (Ai,olj) = &j,i, j = 1,. . ,n. Set Q+ c Q (re- 

spectively, Q_) c Q to be the semigroup (without 0) generated by the simple roots II 

(respectively, by -n). We denote the group algebras corresponding to Q and P by 

@[Q] := spanc{eB 1 /I E Q} and C[P] := spanc{e’ ) i E P}. There exists a central 

extension 

1 -----) (enll(n+i ‘?) -P-P-l Cl.11 

(which after restriction provides a central extension Q of Q), by the finite cyclic group 

(e nii(n+*)‘) of order 2(n + I)‘, satisfying the following condition: if one chooses a 

2-cocycle 

E : p x p _ (eni/(n+l):) (I.21 

corresponding to the extension, then one has 

&(a,jI)@,a)-’ = (-1)(“,B) for a,/I E Q. (1.3) 

We adopt the notation 

c(A,j~) := E(%,~A)E(P,~)-’ for i,p E P; (1.4) 

this is the bimultiplicative alternating commutator map of the central extension (cf. 

[22, Ch. 51; [13, Ch. 2 and 131). 
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The affine Lie algebra 4 (of type A:‘)) is the infinite-dimensional Lie algebra 6 := 

g @ @[t,t-‘1 @ Cc with bracket given by 

b @ t’, Y 8 t"l = Lx, yl 8 tr+s + (x, y) r Sr+s,O c, (1.5) 

where x, y E g, r,s E P and c is central. One also needs the grading operator D := 

-t d/dt. Denote the set of simple (positive) roots of 6 by fi := {Q, al,. . . , c(,} c(Ij @ 
Cc&i CD)*. The usual extensions of (.;) on lj @ Cc @ CD and on (b @ Cc@ CD)* 
will be denoted by the same symbol (we take (c, D) = -1). 

We shall often be working with the nilpotent subalgebras n+ := span, {x2 / a E 

A*} c g and the corresponding subalgebra ii* := nk 18 C[t, t-‘1 (without c) of 6 

(the affinization of rtk is denoted I?* := nk @ @[t ,t-‘1 @ Cc c 6). For the sake of 

building our basis we shall need the one-dimensional subalgebras ng := Cxb, fl E A*, 
of g and the respective abelian subalgebras ii~ := np ~3 @[t, t-l] of 6 (as opposed 

to the affinizations tip := Q @ @[t, t-l] @ Cc). A crucial ingredient of the vertex 

operator construction of basic &modules is another affine Lie algebra: the subalgebra 

Ij:=lps[t,t-‘]cECc of g. 

Recall that for a fixed level k E Z+ (the scalar by which c will act on a module), 

the set of dominant integral weights of 6 is {‘j$, kj/i, 1 kj E N, C,“=, kj = k}, where 

ii E (I)@@c@CD)*, ix0 

and &D) = 0, i, j = 

, . . . , n, are the fundamental weights of 4, i.e., (Ai, xi) = 6, 

0 , . . . , n. The notation L(i) will signify the standard (integrable 

irreducible highest weight) &module of level k and highest weight 2 = ~~,0 kj~j, 
where C,“=, kj = k. 

Let u(A) be a highest weight vector of L(i). Following Feigin-Stoyanovsky [16], 

we define the principal subspuce 

W(i) := U(ri+) . u(i) = U(Ti+) . u(;i), (1.6) 

where U( .) always denotes universal enveloping algebra (similarly, S(. ) always denotes 

a symmetric algebra). The principal subspace is defined the same way for any highest 

weight module. 

For k E Cx, consider the induced b-module 

M(k) := u(b) @u(~cx[t]gicc) @, (1.7) 

with b @ C[t] acting trivially on @ and c acting as k. It is naturally isomorphic as a 

vector space to the symmetric algebra S(h-), where h- := h @ t-‘C[tr’] (similarly, 

set 6’ := h @ tC[t]). 

For a given s E L+, we shall be referring to the “difference two at distance s” 

condition, defined as follows: suppose we have a sequence of integers, nonincreasing 

from right to left, 

m, 5 ... I m2 I ml, (1.8) 
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which are indexed according to their place in the sequence, counted from right to left 

(one can think of such sequence as a partition of the sum of its entries). The sequence 

is said to satisfy the “difference two at distance s” condition, s E Z+, s < r, if 

mt+, 5 mt - 2, l<t<r-s. (1.9) 

The following strict linear (lexicographic) ordering “ <” and strict partial ordering 

“4” (called also “multidimensional” in [41]) will be largely used in our arguments: 

For given r,,, . . . , rl E Z+, Cy=, ri = r, consider color-ordered sequences of r,, integers 

of “color” 12, . . . , r-1 integers of color 1: 

172, 5 . . . 5 m -j-yl T,+1,m-7;iI r, I . . . 5 m,,+l,m,, I f. . 5 ml, (1.10) 

such that only the entries of the same color are nonincreasing from right to left. For 

two such sequences, we write 

(m,, . . . . m2, ml > -c (m:, . , mi, rni 1 (1.11) 

if there exists s E Z+, 1 5 s < r, such that ml = ml,, m2 = rni , . . ,m,_l = mi_, and 

m, < rni. On the other hand, we write 

(m,, . . . . m2, ml> 3 (4 . . . . 4 ml,) (1.12) 

if for every s, 1 5 s < r, one has m, + . . . +m2+ml <rn:+.~.+rn~+rn~ and for at 

least one such s, this inequality is strict. 

It is easy to see that a + b implies a < b but not vice versa. 

We shall also encounter more general situations when an additional characteristic 

“charge” is assigned to the entries of our sequences and ( 1.10) is generalized as follows: 

the “monochromatic” segments are broken into subsegments of entries of the same 

charge so that entries of larger charge are always on the right-hand side of entries of 

smaller charge (of the same color) and only the entries of the same charge and color 

are ordered (nonincreasing from right to left). 

2. Homogeneous vertex operator construction of basic (level 1 standard) modules 

Since most of our considerations refer to the vertex operator algebra approach to the 

basic g-modules (the standard &modules of level l), we shall briefly sketch it in this 

section. We work in the setting of [22] and [ 131, to which we refer for more details; 

see also [6, 21, 31, 551. 

Consider the tensor product vector spaces VQ := M( 1) @ C[Q] , Vp := M( 1) @ @[PI. 

We shall be using independent commuting formal variables z,zg,zi ,zz, . . . . For any 

vector space V we denote by V[[z]] the space of all (possibly infinite) formal series 

of nonnegative integral powers of z with coefficients in V. Similarly, we denote by 

V(z) the space of all (possibly infinite in both directions) formal series of rational 

powers of z with coefficients in V. Recall that VQ has a natural structure of simple 
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vertex operator algebra (VOA) and that I’, is a module for this VOA through a linear 

map, which we define on all of I’,, rather than just VQ (cf. [13]): 

VP + (EndV~){z) 

UH Y(hZ> 

given by 

Y(l @ e”,z) := exp {no, n fi n} exp( zk(n)z} @e’zh” Ei C/2.(- )“” (2.1) 

for ,4 E P and by 

( 
1 

Y n hi(-ni) @ en, Z 

i=l ) 

(2.2) 

for a generic homogeneous vector (hi E h, Hi E Z,, 1 E P), where the following 

notations are used: 

h(m):=h@P forallhEh,mEZ, 

zh, eP := z(+)eP for all 2, p E P, 

EleP := E(& p)eP for all I, p E P, 

h(z) := JiJh(m) @ l)~-~--l for all h E h, 

rnEL 

and : : is a normal ordering procedure, which signifies that the enclosed expression 

is to be reordered if necessary so that all the operators h(m) (h E h, m < 0) are to be 

placed to the left of all the operators h(m) (h E f), m 2 0). Abusing notation, we shall 

often write en instead of 1 @ e’ and h(m) instead of h(m) @ 1. 

Recall the following classical interpretation of Vp as a &module ([21, 551): Let 

as x,(m), where x,(m) is defined as a coefficient of x, c3 tm, a E A, m E Z act on VP 

the vertex operator Y(e’,z) : 

c x,(m)z-m-’ := Y(ea,z); 

rnEH 
(2.3 1 

let h @ t”‘, h E lj, m E Z act on Vp as h(m) (recall that this is our abbreviated notation 

for the operator h(m) @ 1) and finally, let the central element c act as the identity 

operator. Then this action endows VQ and VQe’j for i = 1,. . , n with the structure of 

level 1 standard g-modules with highest weight vectors u(&) := 1 @ 1 and U(jj) := 

l@ee/‘J,j= 1 , . . .,n, respectively. In other words VQ 2 L(&), Vee/‘l g L(Ij) for 
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j=l , . . . , n and therefore VP ” @&L( jj). Note that from the very definitions (2.1) 

and (2.3), one has 

x,(m)9 = ei.xn(nz + (&y)), 2 E P,x E A. 

Adopting the standard notation 

(2.4 

(2.5 

for h E h, one can rewrite (2.1) as 

Y(f?‘.,z) = E-(-h~,Z)E+(-hj.,Z) Q’ f?iZh’Ej,. 

Recall that the commutation relations among these vertex operators as well as some 

nice properties of their products (see the next section) follow from the “commutation 

relation” of E+ and Ep (cf. [22, Ch. 41) 

E+( -hi,z2)E-( -h,,q ) = 
( ) 

1 - 9 
(G) 

E-(-&,=I )E+(-h;.,zz). (2.7) 
Z2 

where i.,/l E P and the binomial expression is to be expanded in nonnegative powers 

of zi/zx. As a corollary, 

E+(-hA,z2)E-(-i&z,) 1~ (eAz;‘~;.)(ep&J 

= const(z: - zi )(“+)Ep(-h p,zl )E+( -hi,z2) 8 ei+p~;‘~:“~;.~p, 

where const E Cx . 

(2.8) 

There is a Jacobi identity for the operators Y( o,z), v E VP (see [ 13, Ch. 5]), and 

we shall be particularly interested in the following case (see [13] formula (12.5)): For 

1, E Q,p E P; d, v* E M( 1); u := u* 8 ei, v := I’* G# ei“, one has 

-I . z1 -z2 

ZO b- ( ) Y(4Zl)Y(~~,Z2) - (-1) 
zo 

(W(i,p)z,‘6 ( 1 5 Y(u,z2)Y(u,z,) 

_ -16 
- Z2 

( > 

z1--‘0 Y(Y(U,Z())V,Z2), 
Z2 

(2.9) 

where 6(z) := CmEaz m is the usual formal delta function and the binomial expressions 

are to be expanded in nonnegative integral powers of the second variable. 

Note that for 11 E Q, we have (- l)(“+)c(i, p) = 1, giving the ordinary Jacobi 

identity for the vertex operator algebra VQ and for its action on the irreducible modules 

VeeAJ, j = l,... , n. In order to get rid of the numerical factor (- 1 )(‘+)c(& p) even if 

p $Z Q, we first note that the fundamental weights Ai,. . . , A,, which are all minuscule, 

constitute a set of representatives for the nontrivial cosets of Q in P. As in [13. 

formula (12.3)], for ~1 E /i, + Q, j = 1,. . .,n, we replace Y(v,z) by ?Y(u,z) := 

Y( v, z)einhl 1 c( ., Aj) (where the operators e inh,‘j and c(.,/Ij) are defined in the obvious 



G. Georgievl Journal of Pure and Applied Algebra 112 (1996) 247-286 261 

ways). For p E Q we simply set “Y(v,z) := Y(u,z). This gives us a linear map 

u +-+ “Y(v,z) from VP to (EndVp){z}, and by Proposition 12.2 of [ 131, we have the 

ordinary Jacobi identity 

zO -‘6 Zl -Z2 ( > ZO 

Y(U,Zi)~(U,Z2) -z$i zT Jy(c,z2)Y(u,z1) 
( 1 

ZI -20 
= Z;‘d - 

( ) 

J~(Y(U,Zo)~,Z2) 
z2 

(2.10) 

(see [13, formula (12.8)]). This identity, together with certain other natural conditions 

(again see [13, Proposition 12.2]), guarantees that g(.,z) defines an intertwining opera- 

tor in the sense of [20]. More precisely, let us write A0 := 0 for convenience. Then for 

p E /lj + Q, j = 0, 1, . . . , n, ~(u,z) (with v as above) defines an intertwining operator 

of type 1. , [I I = (i + j) mod(n f I), since the correspondence j H Aj defines an 

isomorphim from the cyclic group Z/(n + 1 )Z to P/Q ( we are indexing the irreducible 

VQ-modules VQe 4 by the integers jmod (n + 1)); cf. [ 13, Ch. 121. In particular, one 

has a map 

,?/(e”/,z) 1 L(/ii) ----t L(;l,){Z} 

for 1 s (i +j)mod(n + 1). 

Now in (2.9) make the specializations u := e’, a E A+ and ~1 := e”i for any j E 

(1,. .,n}. Notice that from the very definition (2.1) one has Y(e”,zo)e”l E Vp[[zo]] 

and therefore, taking Res, of (2.9), we simply get 

[Y(ea,zi) , tig(e”/,z2)] = 0 for CI E A+, j = 1,. ..,n. (2.11) 

This seemingly innocent commutativity, which asserts that the coefficients of the series 

‘!ZV(e”l,z) are ri+-module maps, has deep implications for the representation theory of 

G : One is tempted to interpret it as a device to “lift” relations (or constraints, as 

physicists would say) between operators from U(n+) acting on L(&) to analogous 

relations among these operators, but acting on L(&). In particular, when questions of 

basis are concerned, it can be very advantageous to treat all the simple modules at 

a given level simultaneously. We shall later demonstrate fruitful applications of this 

strategy (Theorem 4.2). 

We close this Section with the definition of a projection needed only for Part 11 

[25]: Since the grading @[Q] = UBEg CeB of the group lattice C[Q] induces a grading 

of the whole basic module L(Aj) = M( 1) 6 c[Q]e”/, 0 5 j < n, we can define 

Qh^- ).t,(j,) : L(4) + U(~-).U(;li)=M(l)@ee"' -M(l) (2.12) 

to be the corresponding projection on the homogeneous subspace U( b- ) V( Aj ). Using 

the grading U( $- ) = UrnEN U”$) by symmetric powers U”@-) = Sm(G-), we can 

go one step further and define for every m E N the coresponding projection 

(2.13) 
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3. Quasi-particles 

We begin with the choice of a special subspace of U(ii+) whose appropriate com- 

pletions will contain all the basis-generating operators considered below. Set U to be 

the subspace which is the ordered product of universal enveloping algebras 

u := u(li,~))U(n,~_,)‘..U(n,,). (3.1) 

This is a product of subalgebras of U(G), and by the Poincare-Birkhoff-Witt theorem, 

it is linearly isomorphic to the tensor product U(fien ) 8 U(&_, ) 8 . . . @Z U(fi,, ). 

Fix a level k E Z+ and let 2 be a dominant integral highest weight of this level, 

2 = k& + A, A E P. Denote the action of x, @ tm E (j, LY E A, m E Z, on the standard 

module L(/i) by x,(m) (in the previous section we have constructed explicitly x,(m) 

for basic modules). Denote the corresponding generating function (vertex operator) by 

X&z), i.e., 

X,(z) := ~x,(m)z-m~‘, ct E A, (3.2) 
rnEZ 

where z is a formal variable. For example, for the explicit realization of basic modules 

given in the previous section, one obviously has X,(Z) = Y(ea,z) (cf. (2.3)). More 

generally, a standard module at any level k E Z+ can be constructed explicitly as a 

subspace of the tensor product of k such basic modules: In this case we simply set 

X,(z) := Ak-‘(Y(e”,z)), where Ak-’ is the (k- 1)-iterate of the standard coproduct A, 

and then our module is generated by the tensor product of the k level one highest weight 

vectors (no confusion can arise from the fact that A denotes also the set of g-roots). 

Let us quickly show that the principal subspace W(/I) of the standard module L(i) 

is indeed generated by operators in U acting on the highest weight vector ~(2) (this 

is true for any highest weight &module). 

Lemma 3.1. One has 

W(2) := U(ii+) z&i) = u l&i). 

Proof. Observe that W(j) is spanned by 

{b . v(;l)lb E U(Q). . .U(fi,,); BI,...,Br E n>, 

since every xg, fl E A +, can be expressed as a bracket of xX,, 1 5 i 5 n. We want 

to show that the spanning property will still hold even if we order this product of 

universal enveloping algebras. In other words, we have to find a way to change the 

order in the product xa,(I)xr,+, (m), 1 5 i 5 n - 1, when acting on a given vector 

o E W(A), possibly at the expense of changing the indices. But this is easy, because 

for every m E Z, there exists N > 0 such that q+,(m + N) . 1’ = 0 and therefore 

x,,(&,+,(m). 0 = ~,,ta,+,(l +m). u +x,,+,(m)x,(O. 0 

=-xZ,+,(m+N)x,(~-N)~u+x,+,(m)x,(I).v. 0 
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Following physicists’ terminology (cf. e.g. [l l]), we shall say that an operator 

-\-r,(m) E fix, represents a quasi-particle of color i and charge 1 (the eigenvalue 

-m of the scaling operator D under the adjoint action is called the energy of our 

quasi-particle). Moreover, a monomial from U(tiEn))U(ti,“_, ). . U(ii,, ) is of cofor- 

type (ra; r,_l; . . . . rl ) if it carries charge r, with color n, charge r,_l with color n - 1 

and so on (we are using the grading of each U(ti,) = S(ri, ) by symmetric powers 

and taking the tensor product grading). We thus obtain a “color-type” gradation of the 

whole vector space U := U(ii,,,))U(ti,“_, ). . . U(li,, ): 

u = j-J 4,,:...;r,). 
r ,,..... ri 20 

(3.3) 

Note that for every (dominant integral) highest weight 2, the principal subspace W(i) 

also has a color-type gradation (compatible with the h-gradation of L(i)): 

W(A) = fl @Y&-&,, )> (3.4) 
r,.....r, 20 

where 

(3.5) 

is the weight subspace of weight A + Cy=, ria, E P. 
When a given monomial is not monochromatic, it is somewhat convenient to have 

the color-type implicitly encoded in its notation. We shall do this by adding a second 

subscript i to all the entries associated with a quasi-particle of color i and having the 

other subscript enumerating quasi-particles of a given color only (as opposed to using 

a single subscript as in (1 .lO) for example). 

Unless stated otherwise, we shall assume that a product of (commuting) quasi- 

particles of the same color i (and charge 1) has its quasi-particle indices nonincreasing 

from right to left. With this convention in mind, note that the set of quasi-particle 

monomials from U of a given color-type (rn; . . . ; r-1 ) is linearly ordered by “ <” if the 

definition (1.11) is applied to the respective index sequences. Moreover, for two such 

quasi-particle monomials b and b’, we write b + b’ if b < b’ and in addition, 

(m,;...;ml) 4 (mA;...;mi) 

(cf. (1.12)), where mi (resp. m:), 1 5 i < n, is the sum of indices of all the quasi- 

particles of color i in b (resp. b’). 
The partial ordering “4” will be pivotal in our spanning arguments because it has 

the nice property that +-intervals are finite (which is not true for its linear extension 

“ < “; it was an idea of J. Lepowsky to employ the multidimensional ordering “+“, 

fundamental in [41], in the current setting). The lexicographic ordering “<” has this 

property only if the index-sum for every single color is held fixed (because quasi- 

particles of different colors do not commute). 
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One can naturally generalize the above concept of quasi-particle of charge 1 and 

define quasi-particles of arbitrary charge Y E Z+ as follows: 

Definition 3.1. For given i, 1 5 i < n, and r E Z+, m E L, define 

x,,(m) := c x,,(m,)...x,(mi) 

m,.....m, EZ 

m,+...+!?l,=i?l 

(3.6) 

(the indices m,, . . , ml in the above multisum are not ordered!). We call x,,(m) a 

quasi-particle of color i and charge r (the eigenvalue -m of the scaling operator D 

under the adjoint action is as usual the energy of our quasi-particle). Abusing language, 

we shall say that x,,(m) is from U(ti,) because our quasi-particles will always act on 

highest weight modules, in which case, the sum above is finite (note that this sum is 

infinite in general, i.e., the quasi-particles lie in an appropriate completion of u(ti,). 

Note that a quasi-particle of charge r can be thought of as a cluster of r quasi- 

particles of charge one confined in such a way that only the total index-sum (i.e., the 

energy of the cluster with a minus sign) is “measurable”, while the individual quasi- 

particle indices run through Z. Nevertheless, just like the quasi-particles of charge 1, 

the quasi-particles of charge r are coefficients of certain vertex operators: If we set 

(3.7) 

(cf. (3.2)) one can show that T&,(z) is the vertex operator corresponding to the vector 

&,(-I)’ . u(k,&), where v(k&) is the vacuum highest weight vector at the chosen 

level k E Z+. In other words, 

1 
x,,(z) = I%, (- 1)’ u(kAo ), z ). 

(cf. [13, Proposition 13.161). 

(3.8) 

Unless stated otherwise, we shall assume that a product of (commuting) quasi- 

particles of the same color and charge has its indices nonincreasing from right to 

left. Moreover, a product of (commuting) quasi-particles of the same color but dif- 

ferent charges will have its charges nonincreasing from right to left (not surprisingly, 

quasi-particles of the same color but different charges will behave like different objects; 

cf. Section 5). 

Pick a Young diagram (partition) 

K 

y(l) > yc2) > . . . > rtK) > 0, _ cr(‘) = r, K E Z+, 

t=1 
(3.9) 
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pictured as follows: 

(the bottom row has Y( ’ ) squares, the second row has rc2) squares, . . , the top Kth row 

has rcK) squares). Let the dual Young diagram (in reversed order) be 

# I , 

0 < n,( I, < . . <nz<nl =K, CnP=r, (3.10) 
p=l 

(i.e., the rightmost column has nl boxes, the second-from-right column has n2 boxes, 

. . . . the leftmost column has n,( 11 boxes). 

Fix a color i, 1 5 i 5 n. We say that a monochromatic quasi-particle monomial is 

of charge-type (n,cl,, . . . , nl ) and of dual-charge-type (r(l), . . . , rcK)) if it is built (in the 

obvious sense) out of r(l) - rc2) quasi-particles of charge 1, rC2) - rC3) quasi-particles 

of charge 2, . , rcK) quasi-particles of charge K. In other words, each quasi-particles 

of charge r is represented by a column of height r in the respective Young diagram. 

The same terminology of course applies to the corresponding generating functions 

(this is closer to the setting in which Feigin and Stoyanovsky talk about clusters; cf. 

[16, Theorem 2.7.11): We say that 

X n~,,,r,(+‘A. . ‘xl,a,(Zl) (3.11) 

is of charge-type (n,cl,,. . . ,nl ) and of dual-charge-type (r(l), . , rfK)). 
In complete analogy with the charge one picture, we can extend our dictionary to 

multi-colored quasi-particle monomials from U 

b := b, . b2b,, (3.12) 

where b,, 1 5 i 5 n, is a monochromatic quasi-particle monomial of color i (simply 

order the colors and add a subscript i to the entries corresponding to the color i). It is 

clear what it means for the quasi-particle monomial (3.12) to be of color-charge-type 

&.; ‘.n’. . . , nb; . . . ;nr:ll,l,. .,nl,l>, (3.13) 

where 

(11 

0 < n,cl),i 5 . I n2.i 5 w 5 K 2 np,l = ri, 1 2 i < n, 
p=l 

of color-dual-charge-type 

(4’) (K). n ,...,r, . r(l) (K) ,..., , ,... ,rI 13 (3.14) 
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where 

K 

,.(I) > r!2) > . . > Y!~) > 0, I --1 - cr:” = r,, K E H+, 1 < i < n - - 
l=l 

(we shall sometimes be writing only the leftmost and the rightmost entries inside the 

parentheses) and of color-type (r,,; . . ; rl ). It shall also say that the corresponding 

generating function 

x @,,I, nr;l ,,nG ,” ” ) . .xt,,,cL (Z1.l 1 (3.15) 

is of the above color-charge-type and color-dual-charge-type. 

Finally, we can naturally extend both the linear ordering “ <” and the partial ordering 

“4’ to the set of multi-colored higher-charge quasi-particle monomials of given color- 

type (r,; . . . ; r1 ). The lexicographic ordering “<” is defined as follows: First apply 

definition ( 1.11) to the color-charge-types of the two monomials b and 6’ (rather than 

to their index sequences!); if the color-charge-types are the same, apply (1.11) to 

the index sequences of the two monomials. In complete analogy with the charge-one 

situation, the partial ordering “4’ is defined by “restricting” the lexicographic ordering 

“<” as follows: We write b + 6’ if b -=L b’ and in addition. 

(m,;...;ml) + (mL;...;m{) 

(cf. (1.12)), where mi (resp., m:), 1 < i I: n, is the sum of indices of all the quasi- 

particles of color i in b (resp., b’). 

One should be aware that throughout the rest of the paper, the lexicographic ordering 

in the set of color-charge-types (for fixed color-type) will be truncated from above in 

a very special way. Namely, formula (3.8) and the null vector identity 

X,(-l)k”’ v(k& = 0, (3.16) 

(where v(k&) is the vacuum highest weight vector at a given level k E Z+), imply 

that 

&+I)~,(z) =f&)~~~X,,(z~= Y(x,(-l)k+’ . v(k&).z) = 0, 

k+ I .factm 

(3.17) 

i.e., all the quasi-particles of charge greater than k are zero when acting on level 

k standard modules (this was the main idea on which [39] was based). “Annihilat- 

ing” relations like this are not enough for constructing a quasi-particle basis at levels 

k > 1. We shall have to employ in addition the following (obvious from (3.7) and 

(3.8)) relations which express quasi-particle monomials of a given (color)-charge-type 
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through quasi-particle monomials of the same color-type but of greater in the ordering 

“ <” (color)-charge-types: for 0 < s < s’ 5 k, one has 

xw(Z)X,f%(Z) = X(s-l)l,(z)~(,,+,),(z) 

. ” = &(Z)&r+s-l,a,(Z) = x(s’+s)*,(z). (3.18) 

These are s independent relations for monochromatic quasi-particle monomials of 

charge-type (s,s’), 0 < s < S’ < k, which express them through quasi-particle mono- 

mials of greater charge-types. One can actually rewrite these relations among vertex 

operators as (equally obvious) equivalent relations among the corresponding vectors, 

cf. (3.8): 

x,x,(-shd--s’). 6&d = xc,-1)x,(+ - l))x(,,+,)a,(-6’ + 1)). G&d 

... =~a,(-lrxcsl+s-1,*2,(-(s’+~- 1)4%) 

= x(s,+s),,(-0’ + s)) G&) 

=xa,(-l)xa,(-l)...xa,(-1) . z,(k&). (3.19) 

Another series of fundamental relations, independent from the ones above, is the 

following: for 0 < s < s’ 5 k, one has 

(3.20) 

which follows from the corresponding vector relation 

fx&-s - I)x,~,,,(-s') . v(k&,) = ;s,(-s)xs+,(-s’ - 1). u(k;l,,) 

=~a~(-2)x,~(-l)...x,,(-l) . v(k&). (3.21) 
\ , 

s'tsfactors 

Note that the relation (3.20) is trivial for s = s’. Combining (3.20) with (3. IS), we 

can replace (3.20) by another set of relations, independent from (3.18): for 0 < s 5 

s’ < k, one has _ 

(3.22) 
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(for 0 < s < s’ < k these are s new independent relations). The vector counterparts 

of these relations are 

x,7&(-s - l)X,l&S’)~ u(k&) +xs,,(-s)xs’2,(-s’ - 1). o(k/i()) 

s + s’ 
= sx.yz,( -s - 1 )x,$(--s’) . “(kiio) 

s + s’ 
= -X(,-I)c(,(-(s - 1) - 1 ry(d+l)x,(-(S + 1)). f&m 

s-l 

s + s’ 
. = ~x”‘(-l)x(,~+,-I)u,(-(s’ +s - 1)). 4~&). (3.23) 

4. Quasi-particle basis for the principal subspaces of basic modules 

Throughout this section we shall simply talk about quasi-particles without specifying 

their charge since they all will have charge 1. 

Consider all the n + 1 basic modules L(ij), 0 < j < n, as constructed in Section 2, 

i.e., set 

Xp(z) := Y(&z), P E A, (4.1) 

(cf. (2.1)_(2.3)). 

For every j, 0 < j < n, we propose a basis for the corresponding principal subspace 

W(Aj) c L(/i,). Here is the set of quasi-particle monomials which generate our basis 

(when acting on the highest weight vector V(Aj)) : 

Definition 4.1. Fix j, 0 5 j 5 n. Set 

&,A,, := u 
r,....,r, 20 

(4.2) 

mp,i E Z, 1 < i < il, 1 < p 5 r,; 

mp,;Lr,_l-s,.j-2(p-1)-1; , 

mp+l.i 5 mp,i - 2 1 

where ra := 0 (when ri = 0, 1 < i 5 n, no quasi-particles of color i are present). 

The first of the two nontrivial conditions condition is a truncation condition which 

in particular incorporates the interaction between quasi-particles of color i and quasi- 

particles of color i- 1 (quasi-particles of colors i and i- p, p > 1, do not interact with 

each other). The second condition is nothing else but the “difference two at distance 

one” condition for the quasi-particles of the same color i (cf. Preliminaries). 
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Example 4.1. Consider g = si(3) (i.e., n = 2) and the vacuum principal subspace 

W(&) (i.e., j = 0). We shall denote for brevity the monomial x,~(s). . .xa,(t) by 

(s,, . . . t,, ). For the first few energy levels (the eigenvalues of the scaling operator D 

under the adjoint action), we list in Table 1 of the appendix the elements of S3,,,(,i,,, 

of color-types ( 1; 2) and (2; 2). 

Note that due to the second condition in the above definition, we can weaken the 

first condition and still get the same set: 

%v,/i,, = u 1 Xx,,bb,.n) . . .x*n(ml,n) ‘. ‘. . ~X,,(mr,,l)‘-.x,,(ml.l) (4.3) 
r,,....r, 20 

mp.i E Z, 1 5 i i n, 1 I p 5 r,; 

mp.i 5 r,-l - 6f.j - 1; mp+l.i L mp.i - 2 1. 

The first nontrivial condition in (4.3) is encoded in the assertion of the following 

lemma. 

Lemma 4.1. Fix j, 0 5 j 5 n. One has 

(4.4) 

where i-0 := 0. 

Proof. Follows from a more general claim: 

(4.5) 

E fi fJz;;; I I w(ijNzrn,n,. . . ,Zl,l]13 
r=l p=l 

where the binomial expressions are to be expanded as usual in nonnegative integral 

powers of the second variable. But this claim is an immediate implication of the fact 

that 6’ . u(A,) = 0 and the commutation relation (2.8), applied to /z = CII, p = a,, z2 = 

Zq.l, 21 = zp.; (see also (2.5) and (2.6)). El 



270 G. Georgievi Journal of Pure and Applied Algebra 112 (1996) 247-286 

One should not fail to observe that on the left-hand side of (4.5) we have simply 

removed “by hand” all the “universal” poles and zeroes in the generating function 

n 
& (zm, n ). . .&,(.x1 1 UC/ii,. 

Namely, these are the (order one) poles on the hyperplanes 

Zp,i = Zq,i-I, 2 5 i 5 PI, 1 5 JJ < Ti, 1 5 4 < ri-1 (4.6) 

and the (order two) zeroes on the hyperplanes 

zp,i = zq.i+ l<i<n,l<q<P<Yi. (4.7) 

These singularities ought to be “blamed” for the interaction between the quasi-particles. 

It is clear how to identify the restricted dual to W(/i,) space with an appropriate space 

of symmetric (with respect to each group of variables zr,,i,. . .,zl.i) polynomials and 

thus make a connection with the Feigin-Stoyanovsky construction [ 161. 

We are now all set for a quick demonstration of the spanning property of the declared 

basis. 

Theorem 4.1. For a given j, 0 5 j < n, the set {b v(Aj) 1 b E B,+.(i,,} spans the 

principal subspace W(Aj) of L(Aj). 

Proof. In view of Lemma 3.1, it suffices to show that every vector b . U(Aj), b a 

monomial in U, is a linear combination of the proposed vectors. 

If a monomial b of color-type (m; . . . ; ~1) violates the condition 

F?lp,i 5 r--l - S,,j - 1 (4.8) 

for some i, 1 2 i < n, and p, 1 < p 5 ri, then Lemma 4.1 implies that the vector 

b. U(/il) is a linear combination of vectors of the form 6’ . v(ij), b’ a monomial from 

U, with b’ and b having the same color-type and total index-sum and b’ + b (but there 

is at least one color i for which the corresponding index-sums in b’ and b are different; 

cf. Section 3 where the ordering “+” for quasi-particle monomials was introduced). 

There are only finitely many such monomials b’ which do not annihilate V(Aj). 

On the other hand, (3.17) with k = 1 furnishes a new independent constraint for 

every pair of quasi-particles of the same color. It implies that if a monomial b from 

U violates the condition 

mp+l,i 5 mp,i - 2 (4.9) 

(the “difference two at distance one “ condition for a given color i, 1 2 i < n), we can 

express the vector b. v(/ii) as a linear combination of vectors of the form b’. v(ij), b’ 
a monomial from U, with b’ and b having the same color-type and the same index-sum 

for every given color i and in addition, 6’ + b (note again that there are only finitely 

many such monomials b’ which do not annihilate v(;?i)). 
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We have shown that if a monomial violates either of the two nontrivial conditions 

in definition (4.3) it can be raised in the ordering “-Y’ (which has finite intervals). 

In other words, after finitely many steps, we can express every vector b . u(Aj), b a 

monomial from U, through vectors from the proposed set {b . u(ij) lb E BwM’(~, ,}. 0 

Remark 4.1. We have actually proven that every vector b . u(;?i), b a quasi-particle 

monomial from U, b $ !BwC/i,,, is a linear combination of vectors of the form b’ . 
A 

N/I,>, b’ E 2&j,,, with b’ and b having the same color-type and total index-sum and 

moreover b’ + 6. 

As suggested in Section 2, we are going to prove the independence of the above 

spanning set using intertwining operators between different modules (although there 

are other possible approaches, for example, through the dual picture of Feigin and 

Stoyanovsky [ 161). 

Theorem 4.2. For a given j, 0 I j 5 n, the set {b. U(Aj))Ib E %,,A,,} forms a basis 

for the principal subspace W(Aj) of L(Aj). 

Proof. We shall prove first that a monomial relation b. U(jj) = 0, b E ‘BwCi,,, would 

imply U(;?l) = 0 and therefore is impossible. This will only show that each proposed 

basis vector is nonzero but a slight elaboration of this argument will later eliminate the 

possibility for any linear relation among the vectors and thus prove their independence. 

Choose for concreteness a monomial of color-type (rrr; . . . ; r-2; r1 ) 

b := x,,,(m,.,). .x,Z(~I,~)X,,(~,,,I).. .x,,h.~ 1 E B,,,i,, 

and assume that a relation b u(jj) = 0 holds. Apply 

(4.10) 

z-‘-(“‘*“l)?Y(e”‘,z) 
> 

(4.11) 

on both sides of the relation and employ (2.11) to move this operator all the way to 

the right. Then use 

Res, 
( 
z-‘-(“‘~“i)~(e”‘,z) 

> 
. ~(2,) = conste”l . v(Aj), const E Cx, (4.12) 

and (2.4) to move back the operator e”l all the way to the left at the expense of 

increasing by one the indices of all the quasi-particles of color 1. Drop the invertible 

operator e”’ and conclude that b’ . U(;?) = 0, where 

b’ =~,~(m,,,)...x,,(m~,z)xc(,(m,,,~ + l)...x,,(w,l + 1) E Bwcj,). (4.13) 

Repeat the same trick until the rightmost index reaches its maximal allowed value 

(before the corresponding quasi-particle is annihilated by the highest weight vector), 

namely, ml.1 = -1 - 6~. Since 

* a 

X,,(-l-6ij).U(n,)=conste”‘.U(/?i), constECX, (4.14) 
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formula (2.4) allows to move the operator e”’ all the way to the left at the expense 

of increasing by two the indices of all the quasi-particles of color 1 and decreasing by 

one the indices of all the quasi-particles of color 2. Dropping the invertible operator 

e”, conclude that b” D( Ai ) = 0, where 

b” = &“(wn,,,)~~ .Xn2(ml,? - l)Xa,(%,,l + 2).~~&,(m2.1 + 2) E qQ&, (4.15) 

is of color-type (m; ; r2; YI - 1). Repeat this whole cycle and decrease the number of 

quasi-particles until none of them is left, i.e., the false identity c(/i,) = 0 is obtained 
_ contradiction! 

Now assume that a general linear relation CrC’=, &b, . v(ji) = 0 holds, r, E 

CX, b.7 E %V(A,) all distinct (we can assume that the constraint is not a sum of 

two nontrivial constraints and this implies that all b, are of the same color-type). 

Execute the above reduction procedure for the monomial which is smallest (among 

those involved) in the linear lexicographic ordering “ <” (cf. ( 1.11) and Section 3) 

and enjoy the observation that - by the very definition of IL < ” - all the other monomials 

get annihilated at some intermediate stage of the reduction (because they are reduced 

to the form . .x,,(m) for some m > - 1 - 6i,j, 1 5 i < n). So, the outcome is again 

the false identity n(Aj) = 0 - contradiction! 0 

It is truly remarkable that the above recursive reduction actually fails if we start with 

a monomial b from U which is not in B w(j ) (in other words we get at some stage 

of the induction to the trivial but true identity 0 = 0). This means that we could have 

discovered our basis just from the requirement that the above reductio ad absurdurn 

works! 

Without any further elaborations, we can write down character formulas for the prin- 

cipal subspaces. The only two observations needed are the fundamental combinatorial 

identity (cf. [l]) 

1 1 
- := 

number of partitions of m with 

(4)r (1 -4)(1 -q2)...(1 -4’) =m>O C{ at most r parts qrn9 
_ 

(4.16) 

where Y E Z+, (q)o := 1, and the simple numerical identity 

(2(P-1)+l)= 1+3+5+...+(2r- 1)=r’. (4.17) 

p=l 

From the very Definition 4.1, we immediately conclude that for every j, 0 < j < n, 

one has 

(4.18) 
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Equivalently, 

Trg =c 
ct’(i,) I, . ..J”>O 

(4.19) 

where YO := 0, and (Alm)y,m=, is the Cartan matrix of g = sl(n + l,@). 

In the case of the vacuum module (j = 0), this is the Fe&in-Stoyanovsky character 

formula [16]. 

In terms of a generating function which encodes the quasi-particle structure of the 

basis, one has 

chW(;i;) = )‘ ’ 
112 c;,,=, &s-~rm n 

~ J’ L 
qr’nyF. 

r, . . . ..r. 20 rK&?)r, i=l 

(4.20) 

The coefficient of .v;’ . . : y: on the right-hand side gives the q-character of the weight 

subspace Tl,+c”=, r,n, (Aj). 

5. Quasi-particle basis for the principal subspaces at any positive integral level k 

Fix a level k E Z+. We shall consider for simplicity only highest weights of the 

form 

/! := ko_& + kjAj = k& + A, where /l := kj/lj, (5.1) 

for some j, 1 5 j 5 n; ko, kj E N and ko + kj = k. (All dominant integral weights 

are of this form if n = 1, i.e., g = s1(2,C) or if k = 1,) We would like to warn the 

reader that this restriction is not as innocuous as it might look: neither Definition 5.1 

of our basis, nor the subsequent statements (e.g., the crucial for the spanning argument 

Lemma 5.1) are immediately generalizable for other highest weights. 

It is convenient to define 

j, := 
0 for 0 < t < ko, 

j fork0 < t<k=ko+kj. (5.2) 

Simulating the level one bases built in the previous section, we shall propose a basis 

for the principal subspace W( 2) c L(j), which will be generated by quasi-particles (of 

charge no greater than k) acting on the highest weight vector t(i). Not surprisingly, 

our main technical tool will be the realization of W(A) as a subspace of the tensor 

product of k level one modules. More precisely, 

w(/i> = u(fi+ 1’ U(A) C W(;ii,) @ ” ’ @ W(;?i, ) C v,” k, (5.3) 
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where 

V(A) :=U(;?k)>"'@Zl(fij,) 

= V(/ij)@ ." @G U(;l,)@t'(AO)@"'@ V(;lO) (5.4) 
-J 

k, factors ko factovs 

and U(li+ ) acts through Ak-’ (the (k - 1 )-fold iterate of the standard coproduct A in 
the bialgebra U(ii+ ); A ’ := id). no confusion can arise from the fact that A denotes , 

also the set of g-roots). In other words, we set 

A$(z) := Ak-‘(Y&z)) 

= Y(2,z) @ 1 8.. @ 1 + l&1 Y(&z) @. ‘. @ 1 + . . . 
\ / . / 

k factors k J‘actors 

+1~3~~~@1@Y(e~,z), BE A. 
. / 

k facrors 

(5.5) 

Note that by Lemma 3.1, one has W(A) = U . v(A). 
We shall freely use all the notations, definitions and formulas from Section 3. 

Below is the set of quasi-particle monomials from U which generate our basis 

(see the subsequent example). We keep the format of Definition 4.1 in order to help 

the reader to get through this confusing abundance of indices (we shall alleviate the 

pain by pinpointing the correspondence between the entries in Definition 4.1 and their 

generalizations in the current context). Our set is a disjoint union over color-charge- 

types (cf. Section 3) 

0 < nr”l,i I: . . . 5 n2.i < n1.i 5 k, knp,i =: Ti, 1 < i < n, 

p=l 
(5.6) 

or, equivalently, over the color-dual-charge-types 

(?$i’,...,$‘; .,(I) (k) 
...’ I )...) r1 19 

k 

(5.7) 

(t-j” distinct quasi-particles of color i and charge at most k are present). 

Definition 5.1. Fix a highest weight 2 as in (5.1). Set 

or, equivalently, Ll 
rl”>...>r’“>rJ 

~;“~.&‘~O 

(5.8) 
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mp.i E 27, 1 < i 5 n, 1 5 p 5 ri(‘); 

$ I 1 

mp,i I 
c 

‘-’ min{n,i,n,,i-1} - CrI; ai,,, 
q=l 

1 

’ 
-c P>P’>O 

2min{n,i,n,,.i} - n,,i; 

mp+l.r I mp.i - 2np,i for np+l.i = np.i 

where Ye’ := 0 and j, was defined in (5.2). 

It is rather obvious that the role of ri (the total charge due to color i) in Definition 

4.1 is played here by 

and moreover, a quasi-particle xXI(mp,i) of charge 1 from Definition 4.1 is simply 

replaced here by a quasi-particle x,,,,~, (mp,i) of charge ap,i. The “difference two at 

distance one” condition for quasi-particles of the same color and charge 1 in Defini- 

tion 4.1 is generalized in the current setting to a “difference 2n,i at distance one” 

condition for quasi-particles of the same color and charge np,i. Not surprisingly, the 

quasi-particles of the same color, but of diDrent charge, have to be treated as dif- 

ferent objects since they do not satisfy any reasonable difference conditions among 

themselves (although they commute). The first (truncation) condition in Definition 4.1 

has its entries (on the right-hand side of the inequality) generalized here as follows: 

ri-1 = xii: 1H C~~~min{np,i,nq,i-l}, 

-6ijH- c np” 
I=1 

6i, j,, 

-2(P - 1) = -Cp,p,,02 - -Cp,p,,02min{np.i, npj.(} = -C 
P>q’o 

2np.,, 

-1 H -np.i. 

Example 5.1. Consider g = sZ(3) (i.e., n = 2), k = 2 and the vacuum principal subspace 

W(2&). We shall denote for brevity the quasi-particle monomial x,,,~(s). . .xttT,(t) 

by (Q,: . . . ti,r, ). For the first few energy levels (the eigenvalues of the scaling operator 

D under the adjoint action), we list in Table 2 of the appendix the elements of !B3,0~o, 

of color-types (1; 2) and (2; 2). 
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It is illuminating to have the entries in this truncation condition written down 

in terms of the color-dual-charge-type parameters r/“. Suppose nP,i = s, 1 < s 5 k. 

Then 
/I) I I / 

‘,-I ‘,-I s 

Cmin{nP.j,n,,i_l} = Cmin{&n,,i-l} = CY~“,. (5.9) 
q=l q=l I=1 

Since the number of quasi-particles of charge s and color i is Y:“’ - $+I), the total 

“shift” due to the interaction between quasi-particles of colors i and i - 1 is 

(this and the subsequent identities will be needed later for the character formulas which 

are written in terms of $‘). Similarly, the total “shift” due to the delta functions 

is 

k 

-c y!“& 
I ',J/' (5.11) 

t=l 

A longer but straightforward calculation shows that the total “shift” due to the inter- 

action between quasi-particles of the same color i is 

(cf. [16, Theorem 2.7.11). 

Similarly to the transition between Definition 4.1 and the equivalent definition (4.3), 

we can weaken the first condition in Definition 5.1, omitting the terms on the right- 

hand side which are due to the interaction between quasi-particles of the same color 

and charge (the second condition implies that the original inequalities automatically 

hold). Since for np,i = s, one has 

k 

- C 2min {np.i,Ilp,,i} = - C 2np.r = -2s C ri”, 

RP’.J ‘n/L, nPf,, ‘np.l t=s+ I 
(5.13) 

the set ‘B3,,(i, can be alternatively described as follows (cf. also (5.9)): 

or, equivalently, Ll 
r”‘>...,Q’>O 

- 
r~“~...2rjk’~0 

(5.14) 
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= 2 f’if)l - e 6,*, - 2~ k t$‘) - s, where s := fzp.r; 

I=1 I=I f=s+l 

mp+l,i 5mp.i - 2fip., for np+l,i = np,i I 

In contrast to the level one basis (4.3), we have here a new term 

-c 2iz p., = -2s & ?-if) 

n,,‘., >n, I t=s+1 
(5.15) 

(with no analog in (4.3)), incorporating the interaction between a given quasi-particle 

of charge np.i = s and all the quasi-particles of the same color but greater charges. 

The following lemma is the higher level generalization of Lemma 4.1. 

Lemma 5.1. Fix a highest weight 2 as in (5.1). For a generating jimction 

x nil, &I I,, .!I (zr~~ll,n)“‘Xn,,,n,(zl,l) 

of’ color-charge-type 

(nr;“,n’...’ nl,;...;n,:li,,,...,nl,l) 

(cf (5.6)) and a corresponding color-dual-charge-type 

(Y(l) yw . &I) n,...,n ,... ,, , . . . . rl W) , 

(4(5.7)), one has 

where rh’ ) : = 0. 
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Proof. Follows immediately from Lemma 4.1, (3.17) with k = 1 and the explicit form 

(5.5) of the iterated coproduct Ak-' . Note that we are able to encode the highest weight 

2 in the simple term C:c; 6i,j, only because of the special choice (5.1). 0 

We are now ready to state the higher level generalization of the spanning Theorem 

4.1. We continue our strategy of imitating the level one picture. The only essentially 

new element in the proof below (as compared to the proof of Theorem 4.1) is the sep- 

arate treating of the new term - CnP,,, ,np,, 2n, i, incorporating the interaction between 

quasi-particles of the same color but different charges (cf. (5.14) and (5.15)). 

Theorem 5.1. For a given highest weight 2 us in (5.1), the set {b.v(i) ( b E 233,,i,} 

spans the principal subspace W(i) of L(i). 

Proof. Since Lemma 3.1 holds for any level, it suffices to show that every vector 

b. o(A), b a quasi-particle monomial from U, is a linear combination of the proposed 

vectors. 

Suppose a quasi-particle monomial b of color-charge-type (5.6) (and a corresponding 

dual-color-charge-type (5.7)) violates the condition 

+ I 1 
,--I np,’ 

mP,i < Cmin {npj,nq.i-t} - C 6i,j, - Ilp,i = erj!l - 2 Si,j, - S, (5.17) 
q=l f=l t=1 I=1 

where s := nP,i, and 1 < i < n, 1 < p 5 r,” ) (this is the first nontrivial condition 

in (5.14) with the term - CnP,,, ,n,, 2np,r dropped). Then Lemma 5.1 implies that the 

vector b.u(A) is a linear combination of vectors of the form b’.v(A), b’ a quasi-particle 

monomial from U, b’ + b, with b’ and b having the same color-charge-type and total 
index-sum (but there is at least one color i for which the corresponding index-sums in 

b’ and b are different). There are only finitely many such quasi-particle monomials b’ 
which do not annihilate v(A). 

Now the constraints (3.18) and (3.22) come to action. They furnish 2s new inde- 

pendent (nontrivial) relations for monochromatic quasi-particle monomials of (color)- 

charge-type (s,s’), 0 < s < s’ 2 k. Some of these relations involve quasi-particle 

monomials of the same (color)-type, but of greater (color)-charge-types. Adding these 

new relations, we can strengthen the inequality from the last paragraph and claim that 

if a quasi-particle monomial b of color-charge-type (5.6) violates the stronger condition 

,I, 
‘n-1 n,,, I 

mp,i I ~min{~,,i,~q,i-~) - C”i,j, - C 2np.i - np,i 

q=l f=l n)#., >np.z 

= 2 Y,‘y, - 2 6i,j, - 2S k Y2(‘) - S, 

I=1 f=l 1=s+l 

(5.18) 

where s := np.i, and 1 5 i 5 n, 1 < p 5 vi”’ (this is exactly the first nontrivial 

condition in (5.14)), then the vector b . v(/i) is still a linear combination of vectors 
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b’ . t)(i), b’ a quasi-particle monomial from U, b’ F 6, with b’ and b having the same 

color-type and totul index-sum (but the color-charge-type is typically different; no need 

to say that there are only finitely many such quasi-particle monomials b’ which do not 

annihilate P(A)). In order to see this, one has to be more patient than usual and induct 

on the number CfZ,Y+, Y!’ ) of quasi-particles of color i and charge greater than s = n/,,, 

(this is exactly the number of summands in the new term (5.15) which distinguishes 

(5.18) from its predecessor (5.17)). Namely, using the 2np., new constraints for our 

quasi-particle x,,>, ,3, ( mP. i ) and its closest right neighbor of the same color i and greater 

charge, one obtains vectors of the desired form and (finitely many) other vectors of 

the form 6”. v(i), where b” is of the same color-charge-type as b but its quasi-particle 

xn,, 1% has index >*m,i +2n,,. It remains to use the inductive assumption for each of 

the vectors b” . v(A) and observe that they are all expressible through vectors 6’ . u( 2 ) 

of the desired form, i.e., such that not only b’ s- b”, but also b’ F b! 

Finally, the constraints (3.18) furnish s new independent (nontrivial) relations for 

monochromatic quasi-particle monomials of (color)-charge-type (s,s), 0 < s 5 k. This 

means that if a quasi-particle monomial b of color-charge-type (5.6) violates the “dif- 

ference 2il,, j at distance one” condition 

mpf1.i 5 mp.’ - 2np,i for np+l., = np.i =: s, (5.19) 

(this is the second nontrivial condition in (5.14)), then the vector b . u(/i) is a linear 

combination of vectors of the form b’.zj(A), b’ a quasi-particle monomial from U. 6’ 5 

b, with b’ and b having the same color-type and index-sum for any given color i (but 

the color-charge-type might be different; there are again only finitely many such quasi- 

particle monomials b’ which do not annihilate $2)). 

Together with the conclusion of the previous paragraph and formula (5.14) this 

guarantees that - after finitely many steps - we can express every vector b. tl( A), h a 

quasi-particle monomial from U, through vectors from the proposed set {b . u( 2) lb E 

%,j,). q 

Remark 5.1. The proof implies that Remark 4.1 is true for level k highest weights: 

Every vector b . u(i), b a quasi-particle monomial from U, b $ 23,ci,, is a linear 

combination of vectors of the form b’ . u(A), 6’ E BwR.(j,, b’ + b with b’ and b having 

the same color-type and total index-sum. 

We proceed with the definition of a projection needed for generalizing the indepen- 

dence Theorem 4.2 to level k. 

Consider the direct sum decomposition 

0, r,, ,._., r)“2tl 

(5.20) 
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(cf. (3.4) and (5.2)). For a chosen color-charge-type (5.6) and corresponding color- 

dual-charge-type 

(4” (k). n ,..., rn ,...; (1) 
YI >..., ‘.ik’) 

(cf. (5.7)), set 

to be the projection given by the above decomposition (we shall denote by the same 
letter the obvious generalization of this projection to the space of formal series with 

coefficients in W(iijk ) t8 . . . 8 W(Ajl )). For a generating function of the chosen color- 

charge-type, one can now conclude from the definition (5.5) and the constraint (3.17) 

(with k = 1) that 

(5.22) 

= constY(e”n,zr~~,,n)... Y(e'n,zl,,)... Y(e",zrli,,,). . . Y(~"',z,~,). t~(;?j) 
@...@ 

8Y(e~n,zr~l,.,)...Y(ean,zl,~)...Y(ea',zrl'l.l)...Y(el',zl,,) . tl(;l,,), 

where const E CX(a tensor product of k factors). In order to see this, fix a color 

i, 1 5 i 5 n, and first “accommodate” the ni,i vertex operators Y(e”i,zi*i) whose 

product generates the i-colored quasi-particles of charge ni,i (the greatest charge for 

color i in our monomial) - the projection rc forces them to spread only along the ni,; 

rightmost tensor slots and in addition, (3.17) (with k = 1) ensures that at most one (and 

hence, exactly one) vertex operator is apllied on each of these tensor slots. Proceed 

with the remaining vertex operators of color i in the very same fashion. Therefore, for 
A 

a given quasi-particle monomial b of the above type, the projection nCrcl,. ,k,) . b. v(A) n ,..J, 
is a sum of tensor products of k charge-one-quasi-particle monomials (acting on v(i)), 

such that every quasi-particle of charge s from b has exactly one representative (level 

one quasi-particle of charge 1) on each of the s rightmost tensor slots and only there. 

To put it in different words, when a color i is fixed, one might associate the sth tensor 

slot (counted from right to left) of the above tensor product with the sth row (counted 

from the bottom to the top) of the Young diagram in Section 3, filling each box with 

a level one quasi-particle of charge one. 

We can now take on the independence of the proposed basis vectors, generalizing 

the level one independence proof (Theorem 4.2). The projection rt introduced above 

is needed to ensure that if a level one intertwining operators “shuttles” along the sth 

tensor slot (counted from right to left) as in the proof of Theorem 4.2, it can shift 

the indices of the quasi-particles of charge s (and the same color) without affecting 

quasi-particles of smaller charges. The reader is advised to look back at the proof of 

Theorem 4.2, since we shall only sketch here the modifications needed to carry out the 

argument in the present setting. 
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Theorem 5.2. For a given highest weight /i as in (5.1), the set {b. o(A)(b E B3,(i,} 

is indeed a basis for the principal subspace W(i) of L(/i). 

Proof. Pick a quasi-particle monomial b from ‘BWC,l), 

b :=x,,,, ,~(mr~l,,n)...x,,,“~“(m~,)......x,,,, 21(mrll~,,)...x,,,,,,(m~.~) 
‘,/ ” r, ./ 

(5.23) 

of color-charge-type 

(+I 1 .n ,... ,nl,;...;npI l  ,..., r21.1) 
I . 

(cf. (5.6)) and corresponding color-dual-charge-type 

(Y(l) ,a(k). (1) n )..., n )... ;rl )...) Y, ‘k’)=(rp ,...) rp;...;ry )...) YI”‘.O )...) 0). s := nl.1, 

(cf. (5.7)). Assume that b.v(i) = 0 and hence, ncrb~l;,,.;r;~J)’ b.v(/i) = 0. Shuttling back 

and forth along the left-hand side of the last identity with the operator 

1 i;;? . . Q 1 @ Res; ,-l~(n’.n,.~)~(enl,,) 
> 

@ 1 @ . . . @ 1 
- 

(5.24) 

s-~ factors 

increase the indices of all the quasi-particles of charge s = ni,] and color 1 until the 

index of the rightmost such quasi-particle reaches its maximal allowed value (before 

this quasi-particle gets annihilated by the highest weight vector), namely, ml,l = --s - 

C:=, 6~~1 (cf. th e proof of Theorem 4.2). Note that none of the quasi-particles in 

7Qll. ML) n ,...,r, . b . 0(/i) of smaller charge or different color is affected by these operations 

and all the newly obtained vectors are still projections of quasi-particle monomials 

from %&A, acting on u(i). In other words, we end up with the vector 

7c(,‘I I, .p 1 
)I ““’ I ) 

b’xs,,(-S - 2 S,,j,) . II(A) 

t=l 

(5.25) 

for some const E Cx and a quasi-particle monomial b’ E 233,,j, of color-charge-type 

(q,l 1 ~,,...,nl,;...;nr~~~l ,..., n2,1) 
I ’ 

and corresponding color-dual-charge-type 

(r(l) r(k). (1) 
n ,..., n ,...;r, - l)...) ,ys)- l,o . ..) 0) 
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(i.e., the rightmost quasi-particle of color 1 and charge 1~1.1 is not present in b”). Now 

formula (2.4) allows to move the invertible operator 

1@...@l@f’(r71.;.@ex> 

s factors 

all the way to the left and drop it. The result is the relation n(+ll C‘l_l a ,,, s) .b”.z(A) = n I.... 7, , , , 
0 for a quasi-particle monomial 6” E !=B3,,,, with one quasi-particle less (and of the 

same color-charge-type as b’). Keep decreasing the number of quasi-particles in the 

very same fashion until none of them is left, i.e., the false identity v(j) = 0 is obtained 
- contradiction! 

Finally, if a general linear relation holds, execute the above reduction for the quasi- 

particle monomial, minimal in the linear lexicographic ordering “ < ” (we can assume 

without loss of generality that all the quasi-particle monomials involved are of the same 

color-type and have the same total index-sum). During the process, the quasi-particle 

monomials with greater (in “c”) color-charge-types are eliminated due to the projec- 

tion rc and the truncation (3.17) (with k = 1 ), while the quasi-particle monomials of 

the same color-charge-type, but with greater (in “ <“) index sequence, are annihilated 

by the vacuum vector just like in the level one picture. The result is again the false 

identity ~(2) = 0 - contradiction! 0 

As expected, the above reasoning works only for our very special quasi-particle 

monomials from !BWC/i,. Indeed, it was our ambition to employ such an independence 

argument that served as a heuristic for discovering the basis-generating set 23x,C/i,! 

Let us devote our final effort to writing down a character formula for W(i) corre- 

sponding to the above basis. From the very Definition 5.1 and (4.16), (5.10), (5.1 l), 

(5.12), one has for a highest weight 2 as in (5.1) the following character formula: 

(5.26) 

(cf.(5.2) where j, is introduced). 

Just like in the level one case, we can rewrite this formula in a more compact matrix 

form. Namely set p!” := r!“’ - Y!‘+~), 1 5 s < k - 1 and ~1” := yjk’ (note that py’ is 

exactly the number of quasi-par&es of color i and charge s). Since 2 = ko& + kjAj 

for some j, 1 5 j 5 n, we have j, = 0 for 0 < t < ko and j, = 1 for ko < t 5 k. 
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A straightforward calculation now shows that the above expression can be rewritten as 

follows: 

where 

jj, := gQ+t” 
J J +2~?+“+...+ kjpy’, 

(Aim)&, is the Cartan matrix of g = sl(n + 1,C) and BS’ := min{s,t}, 1 < s,t 2 k. 

In the case of the vacuum module (A = k&), this is the Feigin-Stoyanovsky char- 

acter formula announced in [ 161. 

In terms of a generating function with formal variables y(I’), . . y?’ (respectively, 

~1,. . . , y,)which encode the color-charge-type (resp. the color-type) of the basis, one 

has 

chW(ko& +kjij) = C ’ 

l/2 c’;;!; :;” A,,B”p;“p;’ 

p’,“,...,py)>o ikl s=l 

py ‘....,p1(“20, 

The coefficient of 

oy)P:“. . . (?;y’)P’;‘. . (y;‘))PL” . . . (yp)P? 

in the first expression gives the q-character of the subspace generated by quasi-particle 

monomials with exactly pp’ quasi-particles of color i and charge s (hence the color- 

charge-type of such monomials is 

(l,..., l,..., k ,..., k;...;l,..., l,..., k ,..., k) 
-V-V 

iI1 
P. 

lkI 
P. 

,!I 
PI 

#I 
PI 

and the total charge is c:=, Et=, spy’). The coefficient of y;’ . y; in the second 

expression gives the q-character of the weight subspace W "+c;=, r,&Q~ 

Acknowledgements 

We are very indebted to James Lepowsky for innumerable suggestions and for cor- 

rections and improvements on the draft of the paper. 

The author was supported by an Excellence Fellowship from the Rutgers University 

Graduate School. 



284 

Appendix 

Table 1 

G. Georyieol Journal of’ Pure and Applied Algebra 112 (1996) 247-286 

Color-type Energy Basis 

(12) 3 (l,? -3x, - lx,) 

4 - - (lYL 4,, 1X, ).(O,> - 3,, - l,,) 

5 (1x2 -5x, - l,, ).(lZZ - 4X, - 22, ).(Oz, - 42, - 12, ), 

(-122 - 31, - ) 12, 

(22) 4 (-1+1X2 -3,, - II,) 
5 (-2511 L, -3z, - L, ),(-l,,lQ -4,, - l,,) 
6 (-3az 1X2 - 3X, - l,, ),(-2%2 Ia2 - 4,, - l,, ).(-2,,0$ - 3,, - I,, ), 

(-la: L2 -5x, - l,, ),(-1X,1?> -49, - 2,,) 

Table 2 

Color-type Energy Color-charge-type Basis 

(1;2) 2 (1;2) (0,: - 22X, ) 
3 (l;l,l) (12: - 3,, - 13,) 

(1;2) (0~ - 3za, ),(-lz2 - 222, ) 

4 (1:l.l) (1’2 - 42, - 11, ),(O,Z -3x, - 15, ) 
(1;2) (0,: - 4s1, ),(-lzz - 3~~~ ). (-& - 22x, ) 

5 (1;l.l) (1% - 4,, - 2,, ),(1X, - 51, - 12, )> 

(0% - 4,, - 1X, L-1,: - 3,, - l,, ) 
(1:2) (O”z - 5% ).(-la: - 4za, ).(-2,, - 32a, )_ 

t-3,: - 22u, ) 

(22) 2 (2:2) 
3 (2;2) 
4 (1,l;l.l) 

C&1,1) 
(1,1;2) 
(22) 

5 (1,1;1.1) 

(2;1,1) 
(1,1:2) 

(2;2) 

(02q - 22a, ) 

(02xz - 3?w, ). (-1223 - 22x, ) 

C-1, 1x2 -3x, - la, 1 

(02x: -3x, - 11,) 

(-2qOz2 - 22a1 1 

(Oh2 - 4h, 1. (- 12aZ - 32*, 1, ( -22z2 - 222, 1 

(-L,lmz - 4q - l,, L-2x21q - 3,, - l,,) 

(02q -4a, - Lq )1(-1222 - 3q - lx,) 

(-2qOq - 32x, ).(-3a20x2 -22a, ) 

(02q - 521, ). (- 12az - 421,). (-221, - 32a, ), 

(-32,L - 221,) 
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